Publications

Journal articles

Pingali, R., & Saha, S. K. (2024). Rapid Modeling of Photopolymerization in Projection Two-Photon Lithography via an Operator Splitting Finite Difference Method. Journal of Micro- and Nano-Manufacturing, 1–29. https://doi.org/10.1115/1.4065706
Choi, J., & Saha, S. K. (2024). Effect of light intensity on nanoparticle nucleation during printing of silver micropatterns via superluminescent light projection. MRS Advances, 9(13), 1109–1115. https://doi.org/10.1557/s43580-024-00867-4
Pingali, R., Kim, H., & Saha, S. K. (2024). A Computational Evaluation of Minimum Feature Size in Projection Two-Photon Lithography for Rapid Sub-100 nm Additive Manufacturing. Micromachines, 15(1), 158. https://doi.org/10.3390/mi15010158
Choi, J., & Saha, S. K. (2024). Scalable Printing of Metal Nanostructures through Superluminescent Light Projection. Advanced Materials, 36(3), 2308112. https://doi.org/10.1002/adma.202308112
Zilenaite, R., Choi, J., & Saha, S. K. (2024). Rapid sintering of printed silver microstructures via projection of spatiotemporally focused femtosecond light sheet. Manufacturing Letters, 41, 6–10. https://doi.org/10.1016/j.mfglet.2024.05.005
Saha, S. K. (2024). Additively manufactured nanoporous foam targets for economically viable inertial fusion energy. Societal Impacts, 3, 100029. https://doi.org/10.1016/j.socimp.2023.100029
Kim, H., Pingali, R., & Saha, S. K. (2023). Rapid printing of nanoporous 3D structures by overcoming the proximity effects in projection two-photon lithography. Virtual and Physical Prototyping, 18(1), e2230979. https://doi.org/10.1080/17452759.2023.2230979
Choi, J., Kim, H., & Saha, S. K. (2023). Rapid printing of metal nanostructures through projection-based two-photon reduction. Manufacturing Letters, 36, 1–4. https://doi.org/10.1016/j.mfglet.2022.12.004
Pingali, R., & Saha, S. K. (2022). Printability Prediction in Projection Two-Photon Lithography Via Machine Learning Based Surrogate Modeling of Photopolymerization. Journal of Micro- and Nano-Manufacturing, 10(3), 031005. https://doi.org/10.1115/1.4063021
Saha, S. K. (2022). Machine learning based inverse design of complex microstructures generated via hierarchical wrinkling. Precision Engineering, 76, 328–339. https://doi.org/10.1016/j.precisioneng.2022.04.006
Pingali, R., & Saha, S. K. (2021). Reaction-Diffusion Modeling of Photopolymerization During Femtosecond Projection Two-Photon Lithography. Journal of Manufacturing Science and Engineering, 144(2). https://doi.org/10.1115/1.4051830
Mettry, M., Worthington, M. A., Au, B., Forien, J.-B., Chandrasekaran, S., Heth, N. A., Schwartz, J. J., Liang, S., Smith, W., Biener, J., Saha, S. K., & Oakdale, J. S. (2021). Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography. RSC Advances, 11(37), 22633–22639. https://doi.org/10.1039/D1RA01733K
Behera, D., Chizari, S., Shaw, L. A., Porter, M., Hensleigh, R., Xu, Z., Zheng, X., Connolly, L. G., Roy, N. K., Panas, R. M., Saha, S. K., Zheng, X. (Rayne), Hopkins, J. B., Chen, S.-C., & Cullinan, M. A. (2021). Current challenges and potential directions towards precision microscale additive manufacturing – Part IV: Future perspectives. Precision Engineering, 68, 197–205. https://doi.org/10.1016/j.precisioneng.2020.12.014
Behera, D., Chizari, S., Shaw, L. A., Porter, M., Hensleigh, R., Xu, Z., Roy, N. K., Connolly, L. G., Zheng, X. (Rayne), Saha, S., Hopkins, J. B., & Cullinan, M. A. (2021). Current challenges and potential directions towards precision microscale additive manufacturing – Part II: Laser-based curing, heating, and trapping processes. Precision Engineering, 68, 301–318. https://doi.org/10.1016/j.precisioneng.2020.12.012
Lee, X. Y., Saha, S. K., Sarkar, S., & Giera, B. (2020). Two Photon lithography additive manufacturing: Video dataset of parameter sweep of light dosages, photo-curable resins, and structures. Data in Brief, 32, 106119. https://doi.org/10.1016/j.dib.2020.106119
Lee, X. Y., Saha, S. K., Sarkar, S., & Giera, B. (2020). Automated Detection of Part Quality During Two-Photon Lithography via Deep Learning. Additive Manufacturing, 101444. https://doi.org/10.1016/j.addma.2020.101444
Saha, S. K., & Chen, S.-C. (2020). Comment on “Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials.” Advanced Functional Materials, 2001060. https://doi.org/10.1002/adfm.202001060
Cayll, D. R., Ladner, I. S., Cho, J. H., Saha, S. K., & Cullinan, M. A. (2020). A MEMS dynamic mechanical analyzer for in situ viscoelastic characterization of 3D printed nanostructures. Journal of Micromechanics and Microengineering, 30(7), 075008. https://doi.org/10.1088/1361-6439/ab8bc8
Saha, S. K., Wang, D., Nguyen, V. H., Chang, Y., Oakdale, J. S., & Chen, S.-C. (2019). Scalable submicrometer additive manufacturing. Science, 366(6461), 105–109. https://doi.org/10.1126/science.aax8760
Saha, S. K., Au, B., & Oakdale, J. S. (2019). High‐Speed Direct Laser Writing of Silver Nanostructures via Two‐Photon Reduction. Advanced Engineering Materials, 21(9), 1900583. https://doi.org/10.1002/adem.201900583
Ladner, I. S., Cullinan, M. A., & Saha, S. K. (2019). Tensile properties of polymer nanowires fabricated via two-photon lithography. RSC Advances, 9(49), 28808–28813. https://doi.org/10.1039/C9RA02350J

Prior to 2019

Saha, S. K., Uphaus, T. M., Cuadra, J. A., Divin, C., Ladner, I. S., Enstrom, K. G., & Panas, R. M. (2018). Kinematic fixtures to enable multi-material printing and rapid non-destructive inspection during two-photon lithography. Precision Engineering, 54, 131–137. https://doi.org/10.1016/j.precisioneng.2018.05.009
Saha, S. K., Oakdale, J. S., Cuadra, J. A., Divin, C., Ye, J., Forien, J.-B., Bayu Aji, L. B., Biener, J., & Smith, W. L. (2018). Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography. ACS Applied Materials & Interfaces, 10(1), 1164–1172. https://doi.org/10.1021/acsami.7b12654
Saha, S. K., Divin, C., Cuadra, J. A., & Panas, R. M. (2017). Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization. Journal of Micro and Nano-Manufacturing, 5(3). https://doi.org/10.1115/1.4036445
Saha, S. K. (2017). Geometric Prepatterning-Based Tuning of the Period Doubling Onset Strain During Thin-Film Wrinkling. Journal of Applied Mechanics, 84(5). https://doi.org/10.1115/1.4036325
Saha, S. K. (2017). Sensitivity of the mode locking phenomenon to geometric imperfections during wrinkling of supported thin films. International Journal of Solids and Structures, 109, 166–179. https://doi.org/10.1016/j.ijsolstr.2017.01.018
Saha, S. K., & Culpepper, M. L. (2016). Deterministic Switching of Hierarchy during Wrinkling in Quasi-Planar Bilayers. Advanced Engineering Materials, 18(6), 938–943. https://doi.org/10.1002/adem.201600048
Saha, S. K., & Culpepper, M. L. (2015). Design of a Compact Biaxial Tensile Stage for Fabrication and Tuning of Complex Micro- and Nano-scale Wrinkle Patterns. Journal of Micro and Nano-Manufacturing, 3(4). https://doi.org/10.1115/1.4031382
Saha, S. K., & Culpepper, M. L. (2011). Characterization of the Dip Pen Nanolithography Process for Nanomanufacturing. Journal of Manufacturing Science and Engineering, 133(4). https://doi.org/10.1115/1.4004406
Slocum, A. H., Saha, S. K., & Culpepper, M. L. (2011). Metric mapping: a new method to aid in the design of nanomanufacturing systems. International Journal of Nanomanufacturing, 7(2), 143–157. https://doi.org/10.1504/IJNM.2011.040720
Saha, S. K., & Culpepper, M. L. (2010). An Ink Transport Model for Prediction of Feature Size in Dip Pen Nanolithography. The Journal of Physical Chemistry C, 114(36), 15364–15369. https://doi.org/10.1021/jp105855n
Saha, S. K., & Culpepper, M. L. (2010). A surface diffusion model for Dip Pen Nanolithography line writing. Applied Physics Letters, 96(24), 243105. https://doi.org/10.1063/1.3454777
Saha, S. K., & Choudhury, S. K. (2009). Experimental investigation and empirical modeling of the dry electric discharge machining process. International Journal of Machine Tools and Manufacture, 49(3), 297–308. https://doi.org/10.1016/j.ijmachtools.2008.10.012
Salaün, F., Devaux, E., Bourbigot, S., Rumeau, P., Chapuis, P.-O., Saha, S. K., & Volz, S. (2008). Polymer nanoparticles to decrease thermal conductivity of phase change materials. Thermochimica Acta, 477(1), 25–31. https://doi.org/10.1016/j.tca.2008.07.006

Conference articles

Kim, H., & Saha, S. K. (2020). Defect control during femtosecond projection two-photon lithography. Procedia Manufacturing, 48, 650–655. https://doi.org/10.1016/j.promfg.2020.05.157
Nguyen, V. H., Oakdale, J. S., Chen, S., & Saha, S. K. (2018). Dosage Compensation for Uniform Printing with Non-uniform Beams in Projection Two-Photon Lithography (No. LLNL-CONF-754187). Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). https://www.osti.gov/biblio/1465273
Ladner, I. S., Cho, J. H., Cayll, D. R., Nguyen, V. H., Cullinan, M. A., & Saha, S. K. (2018). Mechanical Characterization of Additively Manufactured Microstructures Using a Process Integrated MEMS Tensile Tester (No. LLNL-PROC-748753). Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). https://www.osti.gov/biblio/1459147
Saha, S. K., Divin, C., Cuadra, J. A., & Panas, R. M. (2016, September 27). Part Damage due to Proximity Effects During Sub-Micron Additive Manufacturing via Two-Photon Lithography. ASME 2016 11th International Manufacturing Science and Engineering Conference. https://doi.org/10.1115/MSEC2016-8793
Saha, S. K., & Culpepper, M. L. (2013). Predicting the Quality of One-Dimensional Periodic Micro and Nano Structures Fabricated via Wrinkling. 723–729. https://doi.org/10.1115/IMECE2012-87081
Saha, S. K., LaColla, J. J., & Culpepper, M. L. (2013). An Automated Stage for Scalable Imprinting of DNA Nanowires Based on a Self-Aligning Technique. 1043–1051. https://doi.org/10.1115/IMECE2012-87065